جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA

Authors

Abstract:

Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. In this paper, we have proposed a new method for unmixing of Hyperspectral data using semi-nonnegative matrix factorization and principal component analysis. In the proposed method, spectral and spatial unmixing is performed simultaneously. Physical constraints applied based on Linear Mixing Model. In addition to physical constraints, characteristics of Hyperspectral data have been exploited in the unmixing process. Sparseness of the abundance is one of the important features of Hyperspectral data, which is applied using the nsNMF matrix. In the proposed method update rules is derived using the ALS algorithm. In the final section of this paper, real and synthetic Hyperspectral data is used to verify the effectiveness of the proposed algorithm. Obtained results show the superiority of the proposed algorithm in comparison with some unmixing algorithms

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

جداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از semi-nmf و تبدیل pca

در سال های اخیر جداسازی داده های سنجش از دور با استفاده از عامل بندی ماتریس نامنفی (nonnegative matrix factorization) مود توجه قرار گرفته است و برای بهبود کارایی آن، به تابع هزینه اقلیدسی قید های کمکی می افزایند. چالش اصلی در این میان معرفی قید های است که بتواند نتایج بهتری را استخراج کند. همبستگی بین باند های تصاویر ابر طیفی مساله ای است که کمتر مورد توجه الگوریتم های جداسازی قرار گرفته است. ا...

full text

استفاده از تبدیل PCA مکانی جهت ادغام تصاویر چند طیفی و تک رنگ

Obtaining of an image with high spectral and spatial resolution is the goal of image fusion. The PCA is a well-known pan-sharpening approach widely used for its efficiency and high spatial resolution. However, it can distort the spectral characteristics of the multispectral images. To avoid the weak points of the standard PCA technique, Spatial PCA transform has been proposed and the reasons of...

full text

حسگری فشرده تصاویر ابرطیفی با دسته‌بندی طیفی و بازسازی با تنظیم‌کننده تغییرات کلی طیفی- مکانی

در این مقاله با توجه به همبستگی باندهای طیفی یک تصویر ابرطیفی، ابتدا این باندها را بر اساس ضرایب همبستگی دسته‌بندی می‌کنیم. سپس با استفاده از همبستگی مکانی بین پیکسل‌های یک تصویر ابرطیفی و به‌کارگیری دسته‌بندی مذکور، یک روش حسگری فشرده طیفی-مکانی را با دسته‌بندی طیفی برای تصاویر ابرطیفی پیشنهاد می‌نماییم. برای بازسازی این تصاویر، روش تنظیم‌کننده تغییرات کلی طیفی-مکانی پیشنهاد می‌شود که در آن عل...

full text

بررسی تشخیص نفت با استفاده از الگوریتمهای جداسازی طیفی PPI وFPPI در تصاویر ابرطیفی

با رها شدن نفت به اقیانوسها از تانکرها، کشتی و خطوط انتقال نفت تاثیر اجتماعی اقتصادی روی محیط های ساحلی دارد. آشکارسازی سریع نشت نفت می‌تواند خطرات جدی بر روی محیط زیست و ساکنان ساحلی را کاهش دهد. کشور ما از شمال و جنوب توسط دریا احاطه شده پس حفاظت از دریا امری حیاتی است. سنجنده‌های فراطیفی مجموعه‌ای از تصاویر مکانی را درباندهای متعدد با قدرت تفکیک طیفی بالا از یک منطقه جمع‌آوری می‌نمایند؛ که ب...

full text

انتخاب باندهای بهینه جهت بهبود جداسازی طیفی تصاویر ابرطیفی

مدل آنالیز ترکیب خطی به طور گسترده‌ای برای برآورد سهم هر ماده خالص در اختلاط طیفی مورد استفاده قرار می‌گیرد. راه‌حل ریاضی مسئله ترکیب، حل مجموعه‌ای از معادلات خطی با استفاده از روش کمترین مربعات می‌باشد. اما بیشترین منبع خطا در روش‌های متداول آنالیز ترکیب طیفی ناشی از عدم امکان محاسبه تغییرات طیفی اعضای خالص در سیر زمان و مکان است. در این فرآیند از اعضای خالص ثابتی برای کل صحنه تصویربرداری استف...

full text

بهبود طبقه بندی طیفی-مکانی تصاویر ابرطیفی با به کارگیری اطلاعات مکانی در انتخاب نشانه ها

فنآوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه‌ بندی پوشش‌ های زمین و بررسی تغییرات آنها است. معمولترین روش جهت طبقهبندی تصاویر ابرطیفی، طبقه‌ بندی مبتنی بر پیکسل بوده که در آن هر پیکسل فقط با اطلاعات طیفی خود و بدون در نظر گرفتن پیکسل های همسایه، به کلاس مشخصی اختصاص می‌ یابد. پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 2

pages  57- 70

publication date 2015-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023